IMPROVING THE EFFICIENCY OF THE FIRE CODE FOR COMBATING SHORT PULSE INTERFERENCE

Authors

  • Oleksandr Shefer
  • Oleksandr Yevdochenko

DOI:

https://doi.org/10.26906/SUNZ.2025.3.213

Keywords:

Fire code, noise resistance, correction properties, redundancy, processing delay, computational complexity

Abstract

Relevance. In modern telecommunications networks, it is extremely important to effectively protect information from short impulse noise, which can cause local packet errors. Such noise is particularly characteristic of environments with high levels of electromagnetic noise (e.g., IoT, power cables, satellite communications). To counteract such types of failures, it is advisable to use specialized codes, in particular the Fire code, which has a high ability to detect and correct sequential bit errors of fixed length. Research object: the Fire code in data transmission systems with impulse interference. Purpose of the article: to analyze the effectiveness and study the Fire code, optimize and improve the code's effectiveness using the proposed methods of generating polynomial optimization, hybrid coding, adaptive coding, and parallel processing. Research results. The article proposes and tests methods for improving the efficiency of the Fire code in conditions of impulse noise. A comparison of the probability of correct decoding for different methods was carried out. A comparison of processing delay and computational complexity was performed. The results of the analysis clearly demonstrate the advantages of the proposed methods for optimizing the Fire code, confirming their effectiveness in increasing the probability of correct decoding and reducing processing delay. The proposed methods were implemented in a prototype data transmission system. The results showed a reduction in the probability of decoding errors to 35% compared to the baseline code. Conclusions. Analysis of the Fire code confirmed its effectiveness in combating short impulse noise, but revealed limitations at high noise intensities and high computational complexity. The proposed optimization methods significantly improved the code's performance. The improved Fire code provides increased noise immunity in telecommunications networks, which allows it to be recommended for use in networks with strict transmission quality requirements.

Downloads

Download data is not yet available.

References

1. Wicker, S. B., & Bhargava, V. K., Reed–Solomon Codes and Their Applications. Wiley-IEEE Press, 1999. DOI: https://doi.org/10.1109/9780470546345

2. Ziemer, R. E., & Tranter, W. H., Principles of Communications: Systems, Modulation, and Noise. John Wiley & Sons, 2014.

3. Khudoykulov, Z. “A Comparison of Lightweight Cryptographic Algorithms,” in Lecture Notes in Networks and Systems, vol. 912, Springer, 2024, pp. 456–467.

4. Fire, P., “A class of multiple-error-correcting codes and the decoding scheme,” RCA Review, vol. 21, no. 3, pp. 293–346, 1959.

5. Lin, S., & Costello, D. J., Error Control Coding: Fundamentals and Applications, 2nd ed., Pearson, 2004.

6. Ryan, W. E., & Lin, S., Channel Codes: Classical and Modern. Cambridge University Press, 2009. DOI: https://doi.org/10.1017/CBO9780511803253

7. Wicker, S. B., Error Control Systems for Digital Communication and Storage. Prentice Hall, 1995.

8. Sharma, A., & Kumar, S., “Channel coding in burst error-prone wireless links,” Wireless Personal Communications, vol. 96, pp. 4095–4110, 2017.

9. Yalamuri, G., Honnavalli, P., & Eswaran, S., “Cryptographic Arsenal to Deal with Post-Quantum Threats,” Procedia Comput. Sci., vol. 215, pp. 834–845, 2022. DOI: https://doi.org/10.1016/j.procs.2022.12.086

10. Рудницький В. М., Лада Н. В., Підласий Д. А. Архітектура CET-операцій і технології потокового шифрування. Черкаси: Пономаренко Р.В., 2024.

11. Бабенко В., Мельник О., Мельник Р., “Класифікація трирозрядних елементарних функцій,” Безпека інформації, т. 19, № 1, С. 56–59, 2013. DOI: https://doi.org/10.18372/2225-5036.19.4705

12. Ларін В. В., Мельник О. Г., Підласий Д. А., “Оцінка ефективності згорткових кодів при імпульсних завадах,” Системи управління, навігації та зв’язку, № 4, с. 96–101, 2023.

13. Бурачок Р.А., Климаш М.М., Коваль Б.В. Телекомунікаційні системи передавання інформації. Методи кодування. Львів: Видавництво Львівської політехніки. 2015.

Downloads

Published

2025-09-30

Issue

Section

Communication, telecommunications and radio engineering