Artificial intelligence in auditing financial results: methodological aspects and practical implementation
DOI:
https://doi.org/10.26906/EiR.2025.4(99).4165Keywords:
artificial intelligence, audit, financial statements, large language models, machine learning, international auditing standardsAbstract
The article addresses the development of methodological foundations for applying artificial intelligence in auditing financial statements. The necessity of implementing machine learning technologies and large language models to process growing volumes of textual disclosures in financial statement notes is substantiated. The research identifies systematic challenges of modern audit information environment, including exponential growth of textual disclosures, heterogeneity of data sources, complexity of multi-level judgments, new regulatory requirements for digital reporting, and time constraints of audit engagements. Traditional analytical procedures developed in the era of predominantly paper-based document flow reveal systematic limitations in their ability to provide appropriate level of audit assurance while maintaining economic feasibility. The LLM-AuditBridge methodology for semantic analysis of notes in accordance with international auditing standards is proposed. This methodology implements a multi-stage information processing workflow where each stage corresponds to specific audit procedures and generates specialized artifacts that comply with documentation requirements. The architecture includes three key blocks: risk identification analysis, analytical procedures for cross-validation of textual and numerical data, and generation of responses to identified risks. The methodology employs sophisticated prompt engineering principles, including role establishment, context provision, task specification, output format definition, few-shot learning examples, constraint setting, and chain-of-thought reasoning activation. Critical three-level validation system ensures compliance with requirements for sufficiency and appropriateness of audit evidence through cross-prompt validation, documentary validation, and logical consistency checking. Classical machine learning methods, particularly Benford's Law analysis and logistic regression modeling, are integrated to complement LLM capabilities in numerical data analysis. The architecture of a hybrid system combining LLM analysis of textual data with classical statistical methods for numerical indicators is developed. The integration module performs weighted aggregation of scores from three independent sources and convergence verification, where alignment of multiple independent signals dramatically increases confidence in actual issues. Practical recommendations for implementation of proposed approaches into audit practice are presented, including technical considerations for tokenization, API response times, cost analysis, and organizational aspects. The research demonstrates that AI integration in audit procedures is not only technically feasible but also methodologically justified according to international auditing standards, while preserving auditor's professional judgment and skepticism as fundamental principles.
References
1. Benichou Mouffok B., Ayachi F. Evolution of Auditing in the Face of the Digital Transformation of Enterprises: Challenges and Perspectives. Educational Administration: Theory and Practice. 2025. Vol. 31, No. 1. P. 511–519. DOI: https://doi.org/10.53555/kuey.v31i1.9615
2. Turzo T., Marzi G., Favino C., Terzani S. Non-financial Reporting Research and Practice: Lessons from the Last Decade. Journal of Cleaner Production. 2022. Vol. 345. Art. 131154. DOI: https://doi.org/10.1016/j.jclepro.2022.131154.
3. CEAOB (Committee of European Auditing Oversight Bodies). CEAOB Guidelines on the Auditors’ Involvement on Financial Statements in European Single Electronic Format (ESEF). Brussels, 2021. 7 p. URL: https://finance.ec.europa.eu/system/files/2021-11/211109-ceaob-esef-guidelines-auditors_en.pdf
4. Noordin N. A., Hussainey K., Hayek A. F. The Use of Artificial Intelligence and Audit Quality: An Analysis from the Perspectives of External Auditors in the UAE. Journal of Risk and Financial Management. 2022. Vol. 15, No. 8. P. 1–14. DOI: https://doi.org/10.3390/jrfm15080339
5. Kim A. G., Muhn M., Nikolaev V. V. Financial Statement Analysis with Large Language Models. Working Paper No. 2024-65. Chicago: Becker Friedman Institute for Economics, 2024. P. 1–55.
6. Huang A. H., Wang H., Yang Y. FinBERT: A Large Language Model for Extracting Information from Financial Text. Contemporary Accounting Research. 2023. Vol. 40, No. 2. P. 806–841. DOI: https://doi.org/10.1111/1911-3846.12832
7. Mokashi A., Puthuparambil B., Daniel C., Hanne T. Analysis of Large Language Models for Company Annual Reports Based on Retrieval-Augmented Generation. Natural Language Processing and Applications: Challenges and Perspectives. 2025. Vol. 16, No. 9. P. 1–15. DOI: https://doi.org/10.3390/info16090786
8. European Securities and Markets Authority; The Alan Turing Institute; Institut Louis Bachelier. Leveraging Large Language Models in Finance: Pathways to Responsible Adoption: Report. Paris–London, 2024. – 32 p. URL:https://www.esma.europa.eu/sites/default/files/2025-06/LLMs_in_finance_-_ILB_ESMA_Turing_Report.pdf
9. Petráš J., Hyseni A., Zbojovský J., Pavlík M. Detecting Benford’s Law Effectiveness Threshold Differences According to Affecting Operation. Axioms. 2025. Vol. 14, No. 4. P. 273. DOI: https://doi.org/10.3390/axioms14040273
10. Le L., Mantelaers E. Benford’s Law and Beyond: A Framework for Auditors. Maandblad voor Accountancy en Bedrijfseconomie. 2024. Vol. 98, No. 7. P. 427–438. DOI: https://doi.org/10.5117/mab.98.134061
11. Lee C.-W., Fu M.-W., Wang C.-C., Azis M. I. Evaluating Machine Learning Algorithms for Financial Fraud Detection: Insights from Indonesia. Mathematics. 2025. Vol. 13, No. 4. P. 1–35. DOI: https://doi.org/10.3390/math13040600
12. Chen X., Wang Y., Zhang Y. Detecting Financial Statement Fraud Using Machine-Learning Methods. FinTech Research and Applications: Challenges and Opportunities / eds. D. Chou, C. O’Sullivan, V. G. Papavassiliou. Singapore: World Scientific, 2023. P. 235–263. DOI: https://doi.org/10.1142/9781800612723_0006
13. Рябчук О. Г., Ракуть Д. О. Аудит і штучний інтелект: як технології змінюють професію аудитора. Держава та регіони. Серія: Економіка та підприємництво. 2025. № 1 (135). С. 54–59. URL: https://www.econom.stateandregions.zp.ua/journal/2025/1_2025/11.pdf
14. Спіцина Н. В., Угоднікова О. І. Цифрові інструменти в аудиті консолідованої звітності: нові можливості для обліку та фінансового менеджменту. Актуальні питання економічних наук. 2025. Вип. 13. URL: https://a-economics.com.ua/index.php/home/article/view/691
15. Liu R., Huang J., Zhang Z. Tracking Disclosure Change Trajectories for Financial Fraud Detection. Production and Operations Management. 2023. Vol. 32, No. 2. P. 584–602. DOI: https://doi.org/10.1111/poms.13888
16. Nigrini M. J. Benford’s Law: Applications for Forensic Accounting, Auditing, and Fraud Detection. Hoboken: John Wiley & Sons, 2012. 352 p. DOI: https://doi.org/10.1002/9781119203094
17. OpenAI. Pricing – OpenAI API / OpenAI Platform. 2025. URL: https://platform.openai.com/docs/pricing
1. Benichou Mouffok, B. and Ayachi, F. (2025) ‘Evolution of auditing in the face of the digital transformation of enterprises: Challenges and perspectives’, Educational Administration: Theory and Practice, no. 31(1), pp. 511–519. DOI: https://doi.org/10.53555/kuey.v31i1.9615
2. Turzo, T., Marzi, G., Favino, C. and Terzani, S. (2022) ‘Non-financial reporting research and practice: Lessons from the last decade’, Journal of Cleaner Production, no. 345, Article 131154. DOI: https://doi.org/10.1016/j.jclepro.2022.131154 DOI: https://doi.org/10.1016/j.jclepro.2022.131154
3. Committee of European Auditing Oversight Bodies (CEAOB). (2021). CEAOB guidelines on the auditors’ involvement on financial statements in European Single Electronic Format (ESEF). Brussels, Belgium. Available at: https://finance.ec.europa.eu/system/files/2021-11/211109-ceaob-esef-guidelines-auditors_en.pdf
4. Noordin, N. A., Hussainey, K. & Hayek, A. F. (2022) ‘The Use of Artificial Intelligence and Audit Quality: An Analysis from the Perspectives of External Auditors in the UAE’, Journal of Risk and Financial Management, vol. 15, no. 8, pp. 1–14. DOI: https://doi.org/10.3390/jrfm15080339 DOI: https://doi.org/10.3390/jrfm15080339
5. Kim, A. G., Muhn, M. & Nikolaev, V. V. (2024) ‘Financial Statement Analysis with Large Language Models’ (Becker Friedman Institute Working Paper No. 2024-65). Becker Friedman Institute for Economics at the University of Chicago, 54 p. Available at: https://bfi.uchicago.edu/wp-content/uploads/2024/05/Financial-Statement-Analysis-with-Large-Language-Models.pdf DOI: https://doi.org/10.2139/ssrn.4835311
6. Huang, A. H., Wang, H. & Yang, Y. (2023) ‘FinBERT: A Large Language Model for Extracting Information from Financial Text’, Contemporary Accounting Research, vol. 40, no. 2, pp. 806–841. DOI: https://doi.org/10.1111/1911-3846.12832 DOI: https://doi.org/10.1111/1911-3846.12832
7. Mokashi, A., Puthuparambil, B., Daniel, C. & Hanne, T. (2025) ‘Analysis of Large Language Models for Company Annual Reports Based on Retrieval-Augmented Generation’, Information, vol. 16, no. 9, p. 786. DOI: https://doi.org/10.3390/info16090786 DOI: https://doi.org/10.3390/info16090786
8. European Securities and Markets Authority, The Alan Turing Institute, & Institut Louis Bachelier. (2024). Leveraging large language models in finance: Pathways to responsible adoption (Report). Paris–London. Available at: https://www.esma.europa.eu/sites/default/files/2025-06/LLMs_in_finance_-_ILB_ESMA_Turing_Report.pdf
9. Petráš, J. (2025) ‘Detecting Benford’s law effectiveness threshold differences according to affecting operation’, Axioms, no. 14(4), pp. 1–18. DOI: https://doi.org/10.3390/axioms14040273 DOI: https://doi.org/10.3390/axioms14040273
10. Le, L. and Mantelaers, E. (2024) ‘Benford’s law and beyond: A framework for auditors’, Maandblad voor Accountancy en Bedrijfseconomie, no. 98(7), pp. 427–438. Available at: https://doi.org/10.5117/mab.98.134061 DOI: https://doi.org/10.5117/mab.98.134061
11. Lee, C.-W., Fu, M.-W., Wang, C.-C. and Azis, M. I. (2025) ‘Evaluating machine learning algorithms for financial fraud detection: Insights from Indonesia’, Mathematics, no. 13(4), pp. 1–35. DOI: https://doi.org/10.3390/math13040600 DOI: https://doi.org/10.3390/math13040600
12. Chen, X., Wang, Y. and Zhang, Y. (2023) ‘Detecting financial statement fraud using machine-learning methods’, in Chou, D., O’Sullivan, C. and Papavassiliou, V. G. (eds) FinTech research and applications: Challenges and opportunities. Singapore: World Scientific, pp. 235–263. DOI: https://doi.org/10.1142/9781800612723_0006 DOI: https://doi.org/10.1142/9781800612723_0006
13. Riabchuk, O. H., & Rakut, D. O. (2025). Audyt i shtuchnyi intelekt: Yak tekhnolohii zminiuiut profesiiu audytora [Audit and artificial intelligence: How technologies change the audit profession]. Derzhava ta rehiony. Seriia: Ekonomika ta pidpryiemnytstvo - State and Regions. Series: Economics and Entrepreneurship, no. (1), pp. 54–59. Available at: https://www.econom.stateandregions.zp.ua/journal/2025/1_2025/11.pdf (in Ukrainian).
14. Spitsyna, N. V., & Uhodnikova, O. I. (2025). Tsyfrovi instrumenty v audyti konsolidovanoi zvitnosti: Novi mozhlyvosti dlia obliku ta finansovoho menedzhmentu [Digital tools in the audit of consolidated reporting: New opportunities for accounting and financial management]. Aktualni pytannia ekonomichnykh nauk - Current Issues of Economic Sciences, no. 13. Available at: https://a-economics.com.ua/index.php/home/article/view/691 (in Ukrainian)
15. Liu, R., Huang, J. and Zhang, Z. (2023) ‘Tracking disclosure change trajectories for financial fraud detection’, Production and Operations Management, no. 32(2), pp. 584–602. DOI: https://doi.org/10.1111/poms.13888 DOI: https://doi.org/10.1111/poms.13888
16. Nigrini, M. J. (2012) Benford’s law: Applications for forensic accounting, auditing, and fraud detection. Hoboken, NJ: John Wiley & Sons, 352 p. DOI: https://doi.org/10.1002/9781119203094 (accessed November 24, 2025). DOI: https://doi.org/10.1002/9781119203094
17. OpenAI (2025) ‘Pricing – OpenAI API’, OpenAI Platform. Available at: https://platform.openai.com/docs/pricing
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


